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Droplet drag in an accelerating and decelerating flow 
By S. TEMKIN AND H. K. MEHTAP 
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(Received I1 August 1980 and in revised form 31 July 1981) 

An experimental study of the motion of small water droplets in both accelerating and 
decelerating conditions is presented. Droplets with diameters in the range 115-187,um 
were exposed to propagating N-waves having strengths smaller than 0.03. Droplet- 
displacement data were obtained by single-frame stroboscopic photography, at  an 
equivalent framing rate of 4000 pictures per second. The data were fitted by means of 
best-fit polynomials in time, which were used to obtain drag coefficients in accelerating 
and decelerating flow conditions. In addition to providing drag data for impulsive-type 
motions, these data show that the unsteady drag follows two entirely distinct trends. 
In  one, applicable to decelerating relative flows, the unsteady drag is always larger 
than the steady drag a t  the same Reynolds number. In the other, applicable to 
accelerating relative flows, the unsteady drag is always smaller than the corresponding 
steady value. These trends have not been previously known. They give some support 
to a mechanism recently proposed (see Temkin & Kim 1980) to explain departures of 
the drag coefficient for a sphere from its steady value; namely, the changes in size of 
the recirculating region behind the sphere, relative to its steady counterpart at the 
same Reynolds number. 

1. Introduction 
The drag coefficient for small droplets moving in air is of some importance in many 

scientific and technological applications. For steady conditions, experimental results 
exist which show that, for non-deforming droplets, it is nearly equal to that for steadily 
moving rigid spheres. However, the only situations where small spheres are known to 
move steadily occur when they achieve terminal velocity in a stagnant fluid, and when 
they are fully carried by a steadily moving fluid. Neither situation is representative. 
In  actual conditions, the motion of a droplet relative to the supporting fluid is always 
unsteady, and the question remains as to what are the forces that act on the droplet. 

The problem of unsteady motions of small particles has received considerable 
attention. Several critical reviews of the literature have been recently presented by 
Torobin & Gauvin (1959), by Hill (1973) and by Clift, Grace & Weber (1978). The 
experimental studies include works on spheres released from rest in a quiescent fluid 
(Lunnon 1926), works on spheres moving according to prescribed time dependences 
(Odar & Hamilton 1964; Roos & Willmarth, 1971; Karanfilian & Kotas 1978), and 
works on spheres moving in response to a moving fluid (Ingebo 1956; Selberg & 
Nicholls 1968; Hill 1973; Reichman 1973; Rudinger 1974; Kim 1977). Although the 

t Present address : Boeing Commercial Airplane Co. ,  Seattle, Washington, U.S.A. 
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motions considered in these studies are not the same, and the Reynolds-number ranges 
covered do not coincide, the general conclusion that emerges from them is that  the 
actual drag on the spheres differs from the steady drag. However, there seems to be 
no agreement on the mechanism responsible for the departures. 

Recently, Temkin & Kim (1980) reported some experimental results that show that 
the drag coefficient acting on non-deforming droplets accelerating in the uniform flow 
behind a weak shock wave is larger than the steady drag a t  the same Reynolds number. 
The differences were ascribed to  changes in the recirculating region behind the droplet, 
brought about by the unsteadiness of the relative fluid velocity. I n  particular, it was 
argued that, when this velocity decreases in time, the size of the recirculating region is 
larger than for steady flow at the same Reynolds number, thereby producing a larger 
drag. To test this proposed mechanism, they correlated their drag data with t>he non- 
dimensional relative-acceleration parameter 

where D is the droplet diameter, and U, is the magnitude of the relative velocity 
between fluid and droplet, and found that the experimental results could be expressed 
as 

where CDs is the steady drag coefficient, and K is a constant of order 1 .I- 
These results are strong evidence that unsteadiness produces departures of the drag 

from its unsteady value. However, since, in the experiments of Temkin & Kim, the 
droplets accelerated in the uniform-velocity region behind a normal shock wave, 
dU,/dt was always negative. It was, therefore, not possible to  measure drag coefficients 
under the condition dU,/dt > 0. Further, data for the case dU,/dt > 0 are also needed 
to  test the mechanism proposed to  explain the measured departures. This mechanism 
implies that, if dU,/dt > 0, the recirculating region behind the sphere should be smaller 
than for steady flow, thereby producing a smaller drag than the steady flow a t  the same 
Reynolds number. 

I n  this work, we present drag coefficients for small droplets undergoing both positive 
and negative accelerations. This type of motion is accomplished by exposing the 
droplets to  N-waves. I n  these, the fluid velocity decreases from some value immedi- 
ately behind the leading shock, to  a value of similar magnitude, but having the 
opposite direction, immediately ahead of the trailing shock. Thus, owing t o  the 
passage of the wave, a droplet will first experience large positive accelerations which 

f The algebraic dependence on the density ratio displayed by (1) is not implied. The dimen- 
sional arguments given by Temkin & Kim show that, for a rigid sphere moving unsteadily in a 
fluid, the drag coefficient may be expressed as 

where g(pp/po) is some function of the density ratio. For convenience, the function shown in (1) 
was selected. This choice has no effect on the data or on the fit, because the density ratio was 
constant. Thus, variations of A only represent variations of the non-dimensional acceleration 
( D l W  (dU,ldt).  
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impart to the droplet a velocity in the direction of the flow, producing initially a decrease 
of the relative fluid velocity. However, owing to the deceleration of the fluid velocity 
in the wave, the relative velocity will eventually increase in time. 

Our experiments were conducted with water droplets having diameters in the 
range of 115-187pm. The maximum flow velocity to which the droplets were exposed 
was 1010 cm/s, giving a maximum Weber number equal to 0.137, a value well below 
that for which deformation is noticeable (Temkin & Kim 1980). Our drag dhta show 
two distinct trends. I n  particular, in the Reynolds number range 9 < R < 115, where 
the estimated errors in the Reynolds number are smaller than 15 yo, best fits for our 
data give 

CD = C,,g-k,A ( - 4 5  < A < -3))  (3) 

CD = C,, - k, A-' - k, (5.9 < A < 25)) (4) 

where k, = 0.048, k, = 3.829 and k, = 0.204. 
I n  the transition region, the experimental accuracy is not sufficiently good to 

elucidate the behaviour of the positive-A branch, as A -+ 0. This behaviour remains a 
most important unknown in the study of the effects of unsteadiness on droplet drag. 

2. Experimental apparatus and procedure 
The main components of the experimental apparatus used in this investigation 

include a conical-driver shock tube, a droplet generator, and a high-speed photo- 
graphic system. These components are briefly described below. A more detailed 
description is given elsewhere (Mehta 1980). 

2.1. Conical-driver shock tube 

Several techniques exist that can be used to produce N-waves. The one we selected is 
based on the so-called spherical-balloon problem. Here, a pressurized, spherical 
region is allowed to expand suddenly. As is well known (see e.g. Lamb 1925), the 
expansion produces an N-wave. By analogy, a long cone with a pressurized region 
near the vertex can also be used to produce such waves a t  some distance from that 
region. However, because of practical considerations, we adopted a design in which 
only the high-pressure portion is conical, and the driven portion has a constant cross- 
sectional area. To minimize disturbances produced by the sudden variation of the rate 
of change of the cross-sectional area, we selected a cone having an internal angle of 
only 5", and a length of 11 6 cm. Because of its dimensions, the cone had to be made of 
six smoothly joining sections. The constant-cross-section portion of the facility is 
369 cm long and has a 10-2 em inside diameter. The facility and it,s related instru- 
mentation are shown schematically in figure 1. 

Figure 2 shows a typical pressure-amplitude-versus-time record obtained with the 
above-described facility. The exact time interval between the forward and trailing 
shocks, i.e. the 'test time', changes with amplitude owing to nonlinear effects, but 
for the small amplitudes used in our tests it was nearly constant and equal to 6.8 ms. 
This time closely corresponds to the acoustic limit ts = 2x0/c0, where xo is the length 
of the pressurized cone, and c,, is the speed of sound in the low-pressure region. 

In our experiments we require the fluid velocity between the two shocks. TO obtain 
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FIGURE 1. Conical-driver shock-tube facilit,y. 

FIGURE 2. Typical pressure-versus-time profile. 

this quantity, we make use of the fact that, as shown by shadowgraphs, the leading 
shock is a normal shock. Thus, the fluid properties on both sides of it are connected 
by t,he usual normal-shock relations, i s .  
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D (cm) f (Hz) AID 
0.0115 3400 8.8 
0.0135 2500 8.0 
0.0152 2400 9.9 
0.0167 920 13.6 
0.0183 1000 14.4 

TABLE 1. Droplet-stream characteristics 

where the subscript 0 refers to the properties in the undisturbed region ahead of the 
shock, and the subscript 1 refers to properties on the other side of the shock. Thus, the 
quantity upl is the maximum fluid velocity, U,,, in the wave. The flow velocity in the 
remaining portion of the wave may then be obtained by tareating it, as a simple wave. 
Thus, 

u f = u f 1 + 3 [ ( ” )  (y- l ) /2y -11,  

Y - 1  Pl  

These equations give the fluid velocity near the centre of the tube (i.e. far from 
wall-induced effects), on a cross-sectional plane that intersects the tube at  the location 
of the pressure transducer. On the other hand, what is required for computing the 
drag is the fluid velocity at  the instantaneous location of the droplets, and these are 
injected downstream of the transducer. However, since the instantaneous locations of 
the droplets are known, the required fluid velocity can always be calculated. 

2.2. Droplet generator 

The droplets used in our experiments were produced by the well-known capillary 
instability of a liquid jet. The generator we used was described earlier by Temkin & 
Kim. The main characteristics of the droplet streams we used are shown in table 1. 
Two significant differences between these streams and those used earlier should be 
pointed out. First, in order to attain small Reynolds numbers, they used droplets as 
small as 85pm in diameter. In  our case, because of the reversal of the relative fluid 
velocity, such small droplets were not necessary. Second, our interdroplet separation 
is about 3 times larger than theirs. This advantageous increase was achieved by the 
use of lower frequencies and slightly larger pinhole diameters. 

2.3. Droplet photography 

The droplet streams produced in the manner described above are allowed to fall 
through the horizontal test section of the tube. Before the passage of the wave, the 
droplets’ motion is along the vertical. Afterwards, they acquire a horizontal component 
which is parallel to the tube axis. Thus the droplet motion takes place in a plane, 
making it possible to obtain time-resolved photographic records of droplet trajectories. 
These were obtained by recording on a single negative the stroboscopic light scattered 
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Strobotron lamps 

generator w 
FIGURE 3. Electronic system for flash control. 

by the droplets. Our procedure differs from that used earlier in that the incident-light- 
beam arrangement contained two stroboscopic lamps, rather than one, thus doubling 
the flashing rate. The combination provided an equivalent framing rate of up to 
5000 s-l. 

The electronic system that was used to obtain such high flashing rates is shown 
schematically in figure 3. A signal from one of the pressure transducers (Sunstrand 
Model 211-B5), is delayed by a multiflash generator (General Radio Model 1541) 
which triggers a pulse generator (Hewlett Packard Model 8OllA). This produces a 
predetermined number of pulses. Because of the limitations of the stroboscopic lamps 
used in this investigation (General Radio Model 1538), the minimum interval between 
pulses was 400,us (corresponding to a flashing rate of 2500s-l). Each of these pulses 
produces a flash in the first stroboscope. Nearly simultaneously with the flash, the first 
stroboscope gives an output pulse. This, in turn, is delayed by a delay generator 
(Berkley Nucleonics Model 70 10). After the delay, the pulse is fed into a second strobo- 
scope where it produces a second flash. To ensure proper flashing, the pulse separation 
and the time delay we used were 500 and 250ps,  respectively, giving a flashing rate of 
~ O O O S - ~ .  As in our earlier work, a photomultiplier was used to monitor the flashing 
sequence and to count the actual number of flashes during a test. Typically, this 
number was 25 or larger. Thus, the number of displacement-data points during a 
given test was at least 25. While t,his number may appear to be small, it represents 
a fivefold increase over the number of data points per test used in similar experiments 
elsewhere. Furthermore, our data is collected on a single negative, thus eliminating 
the errors that would exist had the data been obtained from several negatives, 
as is the case when high-speed framing cameras are used. 
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FIGURE 4. Typical reflected-light photograph of droplets during one test. 
Flow is from right to  left. 

Figure 4 shows a typical photograph obtained in the above manner. It shows the 
light scattered by a droplet stream a t  several instants after the passage of the wave 
front. It should be noticed that every droplet in the droplet stream moves equal 
distances between flashes. This is important, for it shows that the flow is one- 
dimensional. It can also be seen in figure 4 that there are differences in the brightnesses 
of the light scattered by consecutive droplet streams. The differences occur because 
the second stroboscope lamp had to be placed slightly off its optimum location in the 
optical arrangement. 

3. Data analysis and results 
Photographs of the type shown in figure 4 were used to determine droplet trajec- 

tories. The procedures used to do this were identical with those used earlier by Temkin 
& Kim, and will not be repeated here. Figure 5 shows trajectories of droplets having the 
same diameter, responding to N-waves having different maximum velocities. Figure 6 
shows trajectories of different-sized droplets responding to N-waves having the same 
strength. The horizontal-displacement data corresponding to figures 5 and 6 are shown 
in figures 7 and S. A total of 17 different trajectories having a maximum Weber 
number smaller than 0.15 were obtained. As explained in our earlier work, no deforma- 
tion of the droplet’s surface could be observed below this number. The corresponding 
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FIGURE 5. Trajectories of 135 ,um droplets. 0, U,,, = 305.6 cm/s; 
A, 403.7 cmjs; V, 704.3 cm/s; 0, 985.6 cm/s. 

displacement data were fitted by means of best-fit polynomials, of the form 

xp = a0 + a1t + azt2 + a3t3, 

Yp  = b0+b1t+bzt2+b3t3. 

The degree of the polynomials was selected from analysis of the standard errors 
associated with polynomials of degrees 1-6. In all cases the standard deviation for the 
displacement polynomials was less than 3pm. 

The polynomials were used to compute droplet velocities and accelerations. Figure 9 
shows the horizontal displacement, velocity and acceleration in one of our tests. It 
may be noted that the initial acceleration is rather large, and that it decreases in time, 
eventually changing sign, a result of the droplet velocity becoming larger than that 
of the fluid. 

To obt.ain the drag coefficient from our experimental data, we make use of 

Here, up and up are the horizontal velocity components of the fluid and of the droplet, 
respectively, v p  is the vertical velocity of the droplet, and g is the acceleration due to 
gravity. By fluid velocity we mean the velocity that the fluid would have at the 
droplet location in the absence of t,he droplet. Also needed is the Reynolds number. 



Droplet drag in an accelerating and decelerating $ow 

XP (cm) 
0.5 1 .o 0 

I 1 

305 

FIGURE 6. Trajectories of different-sized droplets in N-waves having nearly equal maximum 
velocities, U,,, N 990cm/s. 0, D = 120pm; 0, 135pm; A, 167pm; V, 183pm. 

This is given by 

where 

is the magnitude of the relative velocity. Equations (13) and (15) apply only to two- 
dimensional motions (see Temkin & Kim 1980, $2) .  

4. Results 
Figure 10 shows drag coefficients obtained in one of our tests. As customary, we 

show C, as a function of the Reynolds number R. The data points are numbered 
sequentially from t = 0. The numbers have a one-to-one correspondence with the 
sequential numbering of the flashes. The numerical data from which figure 10 was 
prepared is shown in table 2. Also shown in the figure are the estimated confidence bars 
for the Reynolds number. The corresponding estimated errors for the drag coefficients 
are larger than those for the Reynolds number, as indicated in table 2. The confidence 
bars include the errors associated with the higher-order derivatives of the displace- 
ment polynomials, as well as errors in the measurements of pressure and in the 
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t (ms) 

FIGURE 7. Horizontal displacement of 135 p m  droplets in several tests. U, U,,, = 305.6 cm/s; 
A, 403.7 cm/s; V ,  704.3 cm/s; 0, 985.6 cm/s. 

computation of the fluid velocity. Such estimates are often omitted in work of this 
type as they require a large number of closely spaced data points. As pointed out 
earlier, we had a t  least 25 data points per trajectory, and this number was sufficient 
for an accurate assessment of the errors. These errors ranged from few per cent to very 
large values (for details see Mehta 1980). As in our previous work, we eliminate from 
consideration data points having an estimated Reynolds-number error larger than 
15 yo. This step eliminates those data points denoted by filled symbds in figure 10. 
These points occur near the time when the horizontal relative velocity reverses 
direction. At such times, both u~ - up and du,/dt are very small, so that, as (13) and 
(15) show, the errors associated with the first and second derivatives of the displace- 
ment polynomials produce very large errors in both C, and R. 

Figure 11 shows all of our data having estimated errors in the Reynolds number 
smaller than 15%. Also shown in the figure is the steady-drag coefficient. As with 
measurements reported earlier, the data clearly show that the drag on spheres moving 
unsteadily differs substantially from the steady drag. Further, the data show two 
distinct trends. The first, denoted by open symbols, have drag coefficients larger than 
the steady, and are associated with negative values of the relative-acceleration para- 
meter A .  The second, denoted by filled symbols, have drag coefficients smaller than 
the steady, and are associated with positive values of A .  

The drag data as displayed in figure 11 obscure the fact that they were obtained 



Droplet drag in an accelerating and decelerating $ow 

1 
307 

' . O  t 1 

t (ms) 

FIGURE 8. Horizontal disphcement of different -sized droplets responding to equal-strength 
N-waves. 0, D = 120pm; 0, 135pm; A, 167pm; V, 183pm. 

under unsteady conditions. To display the dependence on unsteadiness, we consider 
data having approximately equal Reynolds numbers, but different values of A .  As in 
our earlier work, a small number of such data were found. Figure 12 shows the variation 
of C,, versus A for the three Reynolds numbers for which both positive and negative 
values of A were found. The points with A = 0 refer to the steady case, and were taken 
from the steady-drag curve. The trends for A < 0 are similar to those found in our 
earlier work (see figure 20 of Temkin & Kim 1980); that is, they show that C, increases 
with -A,  and that the rate of increase seems to be independent of the Reynolds 
number. For A > 0, all the drag data available have values smaller than the steady 
drag, and seem to approach their corresponding steady values as A increases at  a rate 
which appears to be independent of the Reynolds number. These statements are 
illustrated in figure 13, which shows, for the data of figure 12, the difference C, - C,, 
as a function of A .  While there is some scatter, and while the number of data available 
is not very large, figure 13 shows clearly that C, -CDs depends only on A. 

The same trends hold for all the data as shown in figure 14. The solid lines passing 
through the data points are least-square fits, and are given by (3) and (4). The results 
for A < 0 are similar to those obtained by Temkin & Kim, except that the magnitude 
of the coefficient K is considerably smaller in the present case. Because of the nature 
of the two unsteady flows, such differences were to be expected. Thus, in the earlier 
work, the droplets were exposed to transient flows having a constant velocity profile, 
so that they experienced large absolute accelerations during the entire duration of the 
test. In the present case, however, the droplets are exposed to transient flows having a 
velocity that decreases in time. Therefore, the large acceleration initially imparted to 
them decreases rapidly in time (see figure 9).  
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t (ms) 

FIGIJRE 9. Typical variations of horizontal droplet displacement, velocity and acceleration in 
one test, (numerical dat,a for the test shown in the figure, no. 2514, are given in table 2). 

c---c3 \ 'P 13 

11 I I 
3 4 5 6 7 8 9 1 0  20 30 40 50 60 7080 90 

FIGURE 10. Drag-coefficient data for test no. 2514. The data for data-point no. 18, are C, = 127.4, 
R = 2.31 (see table 2). Data denoted by filled symbols have estimated Reynolds-number errors 
larger than 15 yo. 
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Flash 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

t 

(ms) 

0 
0.250 
0.500 
0.750 
1.000 
1.250 
1.500 
1.750 
2.000 
2.250 
2.500 
2-750 
3.000 
3.250 
3.500 
3.750 
4.000 
4.250 
4.500 
4.750 
5.000 
5.250 
5.500 
5.750 
6,000 
6.250 
6-500 

XP 

(em) 

0 
0.0008 
b.0032 
0*0070 
0.0122 
0.0186 
0.0261 
0.0346 
0.0440 
0.0542 
0.0651 
0.0766 
0.0886 
0.1010 
0.1138 
0.1268 
0.1400 
0.1533 
0.1667 
0.1800 
0.1932 
0.2063 
0.2191 
0.2316 
0.2439 
0.2557 
0.2671 

y, 
(cm) 

0 
- 0.0649 
-0.1296 
- 0.1933 
- 0.2560 
- 0.3180 
- 0.3793 
- 0.4399 
- 0.4999 
- 0.5595 
-0.6185 
-0.6771 
- 0.7354 
- 0.7932 
- 0.8508 
- 0.9080 
- 0.9650 
- 1.0216 
- 1.0780 
- 1.1340 
- 1.1897 
- 1.2451 
- 1.3001 
- 1.3547 
- 1.4088 
- 1.4624 
- 1.5155 

Ul 

lcm/s) 

448.5 
427.2 
404.5 
381.7 
358.8 
335.9 
313.0 
290.0 
266.9 
243.7 
220,5 
197.2 
173.8 
150.3 
126.8 
103.1 
79.5 
55.8 
32.1 
8.3 

- 16.0 
- 41.9 
- 68.1 
- 94.5 
- 121.2 
- 148.1 
- 175.3 

A 

- 
- 6.2 
- 7.2 
- 8.1 
- 9.2 
- 10.6 
- 12.2 
- 14.3 
- 16.8 
- 20.0 
- 24.0 
- 28.9 
- 34.9 
- 42.0 
- 50.0 
- 63.1 
- 132.7 
- 

- 150.5 
- 4.7 
22.3 
26.7 
24.8 
21.8 
18.9 
16.3 
14.0 

R 

48.41 
46.11f4.4 
42.77 f 4.1 
39.54 f 3.9 
36.42 f 3.7 
33.41 f 3.4 
30.50 f 3.2 
27-70 f 3.0 
25.01 f 2.8 
22.43 f 2.6 
19.97 2,4 
17.64 _+ 2.3 
15.46 f 2.2 
13.46 f 2.3 
11.65 f 2.5 
10.02 f 3.9 
8.24 k 5.1 
2.31 f 1.2 

19.85 f 7.5 
15.65 f 4.7 
16.35 f 3.9 
18.33 f 3.1 
20.81 f 3.1 
23.69 f 3.1 
26.94 k 3.4 
30.57 f 3.7 
34.58 _+ 3.9 

c, 
- 

1.7 1 f 0.32 
1.83 f 0.35 
1-96 f 0.38 
2.11 k0.41 
2.28 +_ 0.45 
2.48 0.51 
2.70 0.56 
2.97 f 0.64 
3.28 f 0.73 
3.65 f 0-86 
4.11 f 1.03 
4.68 f 1.28 
5.38 f 1.75 
6.28 f 3.24 
7.56 f 6.63 

10.29 k 10.45 
127.45 f 23.88 

1.77 k 1.19 
3.05 f 1.24 
3.09 f 1.00 
2.75 f 0.78 
2.39 f 0.59 
2.06 f 0.46 
1.77 k 0.38 
1.53 f 0.31 
1.31 f 0.26 

TABLE 2. Data from test no. 2514, D = 135pm 

5. Conclusions 
The data we have presented in this work, taken together with those presented 

earlier, show unequivocally that the drag coefficient for small spheres moving un- 
steadily in a fluid differs from the steady drag a t  the same Reynolds number. Further, 
the present work shows that the departures from the steady drag depend strongly on 
whether the relative fluid velocity increases or decreases in time. 

Such trends cannot be explained in terms of existing theory. A plausible mechanism 
suggested to  us by Professor G. K. Batchelor (1977, personal communication) on 
the basis of drag data having negative values of dU,/dt was described recently by us 
(Temkin & Kim 1980). The proposed mechanism is the cha,nge of the recirculating 
region behind the sphere. Thus, we expect that, when dU,/dt < 0, the deceleration of 
the free-stream velocity may result in a larger recirculating region, relative to the 
steady case, thereby producing a larger drag. Similarly, when dUr/dt > 0, the 
acceleration of the free-stream velocity may be associated with a smaller recirculating 
region and, therefore, a smaller drag. The two distinct experimental trends presented 
in this work conform to the trends required by the above mechanism and, therefore, 
give support to it. 

Other features of the results may also be described in terms of the same mechanism. 
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FIGURE 11. 
090, 

R 

Drag-coefficient data. Open symbols, dU, /d t  > 0; filled symbols, dU,/dt 
D = 115ym; V, V, 120ym; D, m, 135ym; A, A, 152ym; a ,  4 , 1 6 7 y m .  

I ' : '  ' ' ' ' ' ' ' ' ' CD ' J 6.0 ' ' ' ' ' ' ' 

FIC XJRE 12. Variations of C,  versus A for several Reynolds nun 
A, R N 16; 0, 21; 0, 43. 

ibers. 

< 0. 
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FIGURE 14. Difference between measured drag and steady drag as a function of the relative- 
acceleration parameter for all of the data having an estimated error in the Reynolds number 
smaller than 15 yo. 
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For example, as the magnitude of the relative deceleration increases, the departures 
from the steady drag increase, whereas for large positive relative accelerations the 
opposite effect seems to be true. The first trend seems to be compatible with the 
proposed mechanism because, as the deceleration increases, the size of the recircu- 
lating region also increases. 

Consider now the opposite case. We know that, when A = 0, C, - C,, = 0, and that, 
when A > 0, the proposed mechanism predicts C, - C,, < 0. Suppose now that the 
relative acceleration is now increased from zero. Then we expect that the size of the 
recirculating region will decrease, resulting in a decrease of the drag relative to its 
steady value; that is C,-C,, should become negative. As A increases further, 
C, - C,, should become more negative. It is clear, however, that such a trend cannot 
continue indefinitely. One reason is simply that C,  cannot have negative values. 
Another is that, if the drag decreases as the recirculating region is reduced in size, the 
decrease is largely due to a change of the pressure drag. However, for smaller recircu- 
lating regions the contribution of the friction drag to the total drag is larger than that 
of the pressure drag, whereas for larger ones the trend is reversed. Thus, as that region 
is reduced, owing to an increase in A ,  a point will be reached where C, - C,, will have 
a minimum, and beyond which C, - C,, should increase with A .  

While this argument is somewhat speculative, the observed data seem to support 
it, at least for A > 5 ,  where C, - C,, is observed to increase with A .  Below A = 5 ,  no 
direct support is presented because, as explained earlier, no data were obtained in the 
range 0 < A < 5 that had estimated errors in the Reynolds number smaller than 15 yo.? 
Nevertheless, it is clear that, for small values of A ,  C, - C,, should approach zero from 
below, because, when dU,/dt = 0, we must have C, = CDs. Thus, as A -+ 0, the varia- 
tions of C, - C,, must be the type denoted by the dashed line in figure 14, as required 
by the proposed mechanism. (In fact, the dashed-line trend is followed by the R - 21 
data that are available for 0 < A < 5.  Those data points are, however, not shown in 
figure 12 because their estimated errors in R are of the order of 25 Yo.) 

Thus, based on the fact that the observed variations of C, - C,, for positive and 
negative A seem to be consistent with those predicted by the proposed mechanism, we 
conclude that the departures from the steady drag that have been observed in our 
experiments are due to changes in the size of the recirculating region behind the sphere. 
An important corollary of this conclusion is that, for these unsteady flows, a recircu- 
lating region exists for Reynolds numbers as low as 9. 

Finally, it should be added that drag coefficients obtained in one set of experiments 
may not be applicable to other situations unless they are of a similar nature. The 
motion reported here, and that reported earlier by Temkin & Kim are similar, at least 
in the forward part of the N-wave, where the droplets are accelerating. In fact, if we 
compare the drag coefficients obtained earlier in a uniform-cross-section shock tube 
with those presented here, it  is possible to conclude that spheres accelerating in an 
impulsive type of flow with negative relative accelerations, experience a drag which is 
larger than the steady drag, and that the actual drag can be expressed by an equation 
of the form 

CD = cDs-kA ( A  < O ) ,  

t For the case A > 0, we obtained a total of 115 data points having estimated errors smaller 
than 30 %. Of these, 86 had errors smaller Lhan 20 yo and only 47 points met the stringent 15 yo 
limitation. 
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where L depends on the nature of the flow. On the other hand, the results for A > 0 
presented here are the only ones available. It is, t'herefore, premature to extend their 
applicability to other unsteady situations. 
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